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High Solidity Impellers

● HS ● A315
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Purpose of this project

● Better understand the flood points of down-
pumping, high solidity hydrofoils

● Use CFD to predict these points
● Compare with experiments
● Comparing the two impellers is NOT the 

purpose of this project.  We chose two 
competing impellers to demonstrate how these 
concepts apply broadly to the class of high 
solidity hydrofoils
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Motivation

● There is not a lot of data available 
on these impellers in the literature

● Would have included Ekato's Isojet B 
if we could have gotten a model

● Large gas-liquid mixers in the mining 
industry can have impeller powers 
greater than 1000 kW

● Curiosity

● Can we get CFD to do it?  
●  And who's best?
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Experimental

● T =  289.6 mm (11.4”)

● Z =  285.8 mm (11.25”)

● V = 18.8 L (5 Gallons)

● Water / Air  20 C (68 F)

● D
Sparge

 = 76.2 mm (3”)

● d
Sparge

 = 8 mm (0.315”)

● OB
Sparge

 = 25.4 mm (1”)

● 8 holes facing up 1.59 mm (1/16”)

● 4 baffles, no gap 
● 24.6 mm (0.97”) wide

● 5.7 mm (0.224”) thick
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Impellers

● HS
● D = 89 mm (3.507”)

● D/T = 0.31

● OB = 76 mm (3”)

● OB/D = 0.86

● HCA = 43.5-45.0o

● TCA = 31.5-32.0o

● A315
● D = 102 mm (4.000”)

● D/T = 0.35

● OB = 89 mm (3.5”)

● OB/D = 0.88

● HCA = 35.5-37o

● TCA = 26.5-29o
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Other Impellers
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Speed and Power Measurement

● Lightnin LabMaster
● Ranges 

● P = 0.5 – 27 W
● N = 275 – 1000 RPM
● Fr = 0.22 – 2.88 
● P/V = 0.26 – 2.1 kW/m3

● CS = 1.5 – 6.4
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Gas Flow Measurement

● Dwyer Rotameter
● Ranges

– Q
Rot
 = 10 – 95 LPM

– BP = 0.5 – 15 psig
– Q = 10 – 147 aLPM
– vsg = 0.0025–0.0281 m/s
– F = 0.49 - 5.5 ft/min
– NaeW = 2 – 26% 
– NaeL = 3 – 36% 
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Computational System Information

● ATX size computer system

● CPUs: (2) dual core AMD Opteron 270 chips

=> 4 CPU SMP system, at 2GHz each (Shared Memory 
Parallel)

● Memory:  
● 8 GB memory connected via on  chip memory cross bar.  (Very 

good memory bandwidth)

● CPU effort
● ungassed  steady state models - 1 hour
● gassed transient analysis -  1.5 to 2 days - 4 CPUs
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CFD Background - Codes

● For Geometric Model –  SYNERGY 
● Parasolids based, geom primitives, Boolean ops

● For  Pre-processing – AcuConsole
● Mesh generation, BC's, 
● Problem set-up

● For Solution – AcuSolve  
● Galerkin/Least-Squares (GLS),  FE formulation
● Full Native Transient Variation
● Full Variable Density Formulation (conservation of mass)
● Locally / Globally Conservative, Mass, Momentum, Transport
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CFD Background - Assumptions
● Mesh Discretization Structure 

● Represent Gradients, flow / concentration gradients
● Assessment of error of approximation

● Miscible Fluid approach – Scalar transport
● Gradient Driven Diffusion = 0  => Transport Only
● Phases implicitly segregated by viscosity difference

● Density / Viscosity function of concentration 
● Needs calibration
● Could be related to bubble size

● Modeling Approach – Quasi-Transient (time accurate)
● Fully transient flow / transport,  density  
● Rotating Reference Frame rather than Sliding Mesh
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Objectives

● Proof of concept and approach
● Evaluate legacy assumptions / rules of thumb

● Is Nae=f(Fr or P/V or a constant)?

● Assess miscible fluid approximation to gas-
liquid mixing

● Direction for future work
● Compare with specific / direct experimental 

data
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Approach – Accuracy Considerations
● Accuracy Considerations

● Full time-accurate transient Flow / Transport / Geometry

– Adaptive time step (to get a solution)

– Sliding Mesh (moving geometry)

– Max delta t governed by impeller speed e.g.                
● delta t = 2.0/(rpm*2*pi/60) = .0236 s for 2 deg impeller resolution of rotation

● Quasi Transient ( Rotating Reference Frame)

– Assume impeller speed is sufficiently fast so that position is not important.

– Allows larger time steps

– Less computer intensive – works for people on a shoestring budget

● Solution Strategy Trade-offs – solution time versus resources

● Fixed delta t, iteration limit per time step, sufficient for this work
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Approach – Scalar Transport

● Solve / propagate scalar transport equations 
along with momentum and continuity equations 
in time

● Assume miscible fluids
● Set Diffusion Constant / Term of Transport 

equation to zero
● Motion is by fluid convection only
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Approach – Variable 
Density/Viscosity

● Develop density / viscosity function of scalar 
transport as a function of concentration gas 
bubbles.
● Linear fit implies extremely fine bubble size
● More aggressive curve fit could be understood to be 

related to “bubble size”
● Bubble size calibration required for further 

development

● Viscosity variation provides natural implicit 
barrier against undesired transport (mixing of 
the two phases)
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Model Characteristics

● 2.6 Million Tetrahedra (fluid)
● 500,000 Nodes
● Boundary layers on all solid surfaces
● Boundary layer thickness on impeller surface 

0.25 mm
● Triangle Facet Characteristic length 1.5 mm
● Aspect ratio 6 (characteristic length to thickness)
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General Error Assessment

● Use built in error estimator
● Relative measure
● IsoSurface of volume within with a specified 

percentage is contained
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Error Estimator Isosurface

50 % Error Magnitude

75 % Error Magnitude

95 % Error Magnitude
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Some Results

● Rushton Turbine

● T=0.29, D/T=0.35, Fr=0.46,  NaeW=0.236

● Nienow et. al (1985) would have gotten approx. 0.21
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Rushton Trailing Vortices
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A315 Approximation
● Idealized geometry from experimental impeller
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A315 Approximation

● Ungassed power number 

● Np(CFD) = 0.78 – steady 
state CFD 

● Np(Exp) = 0.79

● Nq(Lit)= 0.73

● Flow, inherently unsteady, Np 
± 0.05
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A315 Approximation
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A315 Approximation 
Ungassed Flow Solution 810 RPM
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A315 Approximation 
Ungassed Flow Solution 810 RPM
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A315 Approximation 
Ungassed Flow Solution 810 RPM
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Gassed power number data - A315

● Qg=48.5 LPM
● Not flooded

● NpCFD=0.70±8.3%

● NpEXP=0.65±7.7%

● Qg=57.4 LPM
● Flood point

● NpCFD=0.68±12.5%

● NpEXP=0.4-0.66±32.5%

● Qg=65.4 LPM
● Flooded

● NpCFD=0.67±12.9%

● NpEXP=0.43-0.44±2.3%
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Gassed transport pictures

● Iso-surface of 5% v/v 
of gas at 810 RPM

● Not flooded
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Flooded A315

● Vector plot ● Iso-surface of gas 
concentration = 5% v/v
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Some A315 experimental stuff
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HS Approximation
● Idealized geometry from experimental impeller
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PM HS Approximation
● Idealized geometry from experimental impeller

● Ungassed Power number Np0=1.6, experimental Np0=1.35

● Nq0=0.94 (Np0=1.6) or Nq0=0.87 (Np=1.35)

● Flow, inherently unsteady
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HS Approximation
Ungassed Flow Solution at 630 RPM



NAMF Mixing XXII – Victoria 2010
Tribute to Chad Bennington

35

Gassed power number data - HS
● Qg=25.8 LPM

● Not flooded

● NpCFD=1.61±8.8%

● NpEXP=1.35±3.0%

● KF=1.00±3.0%

● Qg=30.4 LPM

● Flood point

● NpCFD=Not done

● NpEXP=0.93-1.34±18%

● KF=0.69-1.0

● Qg=34.9 LPM

● Flooded

● NpCFD=Not done

● NpEXP=0.93-0.93±0%

● KF=0.69
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Gassed transport pictures
● Iso-surface of 1% v/v of gas at 

630 RPM after 56 s 

● Not flooded

● Iso-surface of 1.25% v/v of gas at 
630 RPM after 62 s

● Not flooded
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Some HS stuff
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Only HS – A315 comparison
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A315
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Scale-up

● Consequences of scaling up on Froude 
Number
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Conclusions

● Experimental
● Experiment appears to be working on a shoestring budget
● High Solidity Hydrofoils can also be correlated like the 

Rushton and Smith Turbines
– When a radial floods Npg has a step change increase

– When an axial floods, Npg has a step change decrease

● First time public report on the PMS HS impeller
● Both high solidity hydrofoils behave similarly
● This and more will soon appear on my new website 

www.postmixing.com 
– Many more impellers will be described on the Impeller Page 

including Ekato's IsoJet B (Np=1.1-1.15)

http://www.postmixing.com/
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Conclusions

Computational Work
● Acusolve has shown potential for dealing with very complex problem in an 

approximate fashion

● The variable density / variable viscosity approximate model approach has 
demonstrated some potential

● Viscosity model helps reduce general unwanted diffusion

● Model needs to be calibrated for flow rates / bubble sizes, etc.

● Need to investigate the local highly unsteady behavior with variable time 
steps, and better convergence metrics which are available in Acusolve.

● Accuracy considerations in the above, may require a full transient with sliding 
mesh

● All of these capabilities are available in Acusolve.

● Perhaps need a bit more powerful computer
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Thank you

● I would like to thank Richard Kehn of Lightnin 
for willingly giving me an A315 to experiment 
with, even after he knew I would also be looking 
at his competitor's impeller

● I would like to thank Bob Dowd of PMS for 
giving me a bag full of impellers to play with 
(including the HS) about 5 years ago, which 
allowed us to come up with the premise of this 
project in the first place.
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